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A problem of diffraction of a plane shock wave on a wall forming a small angle 
with the vector normal to the front of the incident wave, is investigated, The 
wave propagates through a perfect compactible medium. The model of the 
medium is used to give an approximate description of mechanical behavior of 

porous materials subjected to pressures greatly exceeding their yield point, with 
the compressibility of the lattice skeleton remaining insignificant as compared 

with deformation of the filler, and for the time being we can ignore it. 

The solution is obtained using the method given in [l] for solving the Light - 
hill’s problem [Z]. A method, in which the present problem is regarded as a 

problem of singular perturbations, is also used. The theory of approximate 
conformal mapping of neighboring regions [3 1 is used to obtain the first ap - 
proximation in the outer expansion, with the smaller singularity situated at the 
comer point. When the degree of compaction is small (weak shock wave), 
then a uniform first approximation can be constructed using the method of 
matching asymptotic expansions [4]. The asymptotics of the solution near 

the concave angle coincides with the known asymptotics of a solution near the 

edge of a wedge [4], The solution about a convex angle is divergent, and in 
this case a bounded solution must be sought utilizing a different scheme of 
flow, e. g. taking into account the free surface formed because of the flow 

separation. 
When the deformation becomes considerable (strong shock wave ), it is shown 

that the region of irregularity is finite, and the problem becomes more complex 
since even the first term of the outer expansion depends on the inner solution. 

It should be noted that the present problem differs from the problem of irre - 
gular reflection where the asymptotics is influenced by the nearness of the 
triple point to the reflecting surface (the first steps in the study of this prob- 
lem were based in [5 ] on the short wave theory ) . The asymptotic case con- 
sidered here is the exact opposite ; the triple point is situated very far from 

the reflecting surface. 

1. Formulation of the problem. Let a perfect compactible medium 
occupy a region bounded by a rigid wall AOE, and let the ray OE form a small 
angle with the continuation of the ray A0 (Fig. 1). The plane shock wave with 
constant parameters ( PO is pressure, u. and do are the mass velocity and wave 
velocity) behind the front moves in the direction parallel to A0 and reaches, at 
the instant t=o ( the comer point of the wall 0. The problem is that of com- 
puting a two-dimensional selfsimilar motion of the medium resulting from diffraction 
at t > 0. 
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We assume that the medium ahead the front is at rest and the pressure is zero ; the 
density of the medium is p = PO ahead the front and p = pr = const > p. 

(- oo < t < 00) behind the front in accordance with the model used. Let us de - 
note by p’ and u’ the pressure and mass velocity vector in a fixed 5, y -coordinate 

system (Fig. 1) and seek the equation of the front in the form 

5 = dot 11 + f’ (y, t)l 

Let us introduce the dimensionless and selfsimilar variables, and the equation of 
the front surface 

E = xld,t, q = yld,t, p = p’lpo 

u = (24, v) = U’IU, g = g (q) = 1 + f (q) 

Using the E, 7 -variables we can write the system of Euler equations in the 
region Q occupied by the medium in motion, the boundary conditions of the problem 

Fig, 1 

at the front and at the wall,and the conditions of compatibility at the point B , in 
the form ( n is the outward normal to the boundary ) 

Q:divu=O, Ku=OVp (p--tl,u-+(l,O),r+oo) 
(1.1) 

AB:p= [u12, u= $=$(1,-E’) (E(rl)+Lrl-+4 

ArOB:u.n=O,atthepointB:~/~=v~u= tga 

K = (E - eu)ala~ + (Tj - ev)dldTj, E = 1 - 0 = 1 - PO/p1 

r2 = E2 + q2, E’ = dE/dq 

We shall seek the solution in the form of series in terms of small parameter a 

p=1+apl+a2p2+..., u=1+au,+a2u2+... 

v=avI+a2v2+ . . . . j=af,+a2f2+... 

substituting these series into (1.1). we obtain the following problem for the first 
order approximation to which we shall restrict our search: 



176 I. V. Simonov 

Q: div u1 = 0, K,u, = f3Vp, (pl + 0, u1 + 0, r -+ co) (1.2) 

AB: ~1 = 2241, ~1 = fl - @I’, ~1 = -fl’ (fI -+ 0, q -+ 00) 

A,OB: 13p,l& = 0, at the point B : u1 = 1, q = a 

(u1 = (%r UJ, K, = (E - 8)8/q + @ml) 

Eliminating u1 and fl from (1.21, we obtain 

52: Ap1 = 0 (pl-+O, r--f 00) 

AB: 2@+ (q” - e) $$ = 0, 1 
BA 

A,OB: dp,ldn = 0 

(1.3) 

aP1 -=- 2 
rl 

(1.4) 

(1.5) 

where the second condition in (1.4 ) follows from the conditions prevailing at the front, 
and the conditions of compatibility (1.2 > . Thus in the first approximation, the problem 

reduces to that of determining a function p harmonic in Q using the boundary con- 

ditions (1.4) and (1.5). 

2. Solution of the problem under Lighthill’s assumptions. 
Following of the method used in Cl, 2 I, we transfer the boundary conditions to the un - 
perturbed boundary A,OB’A of the region Sz . The assumption of smallness of 

the perturbations everywhere in the region yields the following conditions u1 = 0 on 

A10 and v1 = 1 on OB . In this case the condition (1.5) is replaced by 

[I ,2 ] (6 (E) is the delta function ) 

AOB’: dp,ldn = -86 (&)/Cl 

Let us introduce the complex variable C=E+irl and the function P = 
p1 + iq analytic in 52. The transformation c1 = 1 - (1 - 5)” = &I + iqr 

maps the region 51 conformally onto the upper half-plane 51 with the normalizing 

conditions 5, (0) = 0, c1 (1) = 1, <I (oo) = 00. For the function dJ’/dSr = 

dp&-G, - i+,laq, analytic in the upper half-plane & the condition on the 

real axis can be written in the form 

a = 201/&- 1, b=E1--l--B &>I) 

a = 1, b=O &<I) 

c = --&6(E1)/@3) (=m<41<xJ) 

The inhomogeneous Riemann - Hilbert problem with discontinuous coefficients 
stated above can be solved using the method given in [2,6]. The uniqueness of the 
solution is secured by the conditionat infinity. Let us write the final result 
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Here the constant Aa is determined from the integral condition (1.4 1, 
When the density change is small (8 < 1, 0 G 1) , we obtain 

P=4/[xP-L5)1 (I<l=O(l)) (2.3) 

P c --&-l*c+const (l<l+o) 

to within the terms of higher order of smallness. 

From (2.2 ), (2.3 ) and (1.2 ) it follows that the pressure has a logarithmic sing - 
ularity at the point 6 = 0, and the velocity at the points 5 = 0 and 5 = 8. 
An analogous result was obtained in Cl, 21. 

The present problem is a problem of singular perturbations. We find an uniformly 

usable first approximation by the method of matching asymptotic expansions. For the 
first term of the outer expansion we have the problem (1.2) which can be reduced to 
(1.3 ) - (1.5). Its solution is not unique, since the singularity appearing in the con- 

ditions (discontinuity ) in the wall makes it possible to supplement thesolution with a func- 

tion possessing a singularity at the point Oand exerting no influence on the boundary cond- 
ditions. In choosing the solution we shall follow the general principles of minimizing 
the singular character and of ability to match with the additional expansion I4 I. 

3. Solution of the problem by the matching of asymptotic 

8xprn~lonr (firrt order approximatfon). Let F, = % (83 be a func- 
tion mapping the half-plane Im c1 > 0 onto the perturbed region of flow 52 with 

the normalizing conditions 5 (0) = 0, 5 (1) = cn, 5 (co) = 00. On the real axis 
the condition for the function dPld 51 analytic in the upper half-plane & which 
follows from (1.4 ) and (1.5 1, is written in the form 

(% < 1) 

(3.1) 

x baq b al=a2--- 2%) l=a2$+b2$ a> 1) 

a2 = 281 (El), b2 = CJ - q2 (Ed 

The singularity @,/&I~ at the point 0 does not appear here. It arises in 
Sect. 2 from the assumption that the expansion is regular, and this is not the case in the 

neighborhood of s = 0. 
We can write the uniform approximations to the function 5 (cl) and its deri- 

vative in the region Im Ll > 0 in the form 

(3.2) 

where ra is a number satisfying the conditions FO 2 6, PO < 1 and the radical 

should be uniformized in such a manner that VI& - 1 > 0 when El > 1, 6, = 

6/(1 - 6), 6 = a/n. 
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We prove (3.2 > using the method of approximate conformal mapping 15 1. Let us 
consider the Christoffel - Schwarz transformation 5 = g (52) of the half - plane 

Im f& > 0 onto the region AOBA’ (Fig. 1) with rectilinear boundar~~ 

with norma~~ng corrditions g (0) = 0, g (1) = CB, g (oo) = co and the trans- 
formation fa = --11&. The mapping of 52 in the plane %a = 5s + iqa is a 
region lying near the half-plane Im 5s > 0 with the variation of the boundary 

r)s z 71s (Es) different from zero on the interval E -I,03 (curve 1 in Fig. 2) . 
Equality of the small angles ccl and CL, made by the curve qa (%a) with the axis 

%i = 0 at the ends of the above interval, can be achieved by choice of 8% . Consider 

the transformation ca = &, ( 7;& [5 1 of the upper half-plane & onto the upper 
ha~-~~ne 5a where one small segment of width IJ“~ is removed and an identical 
one added on the interval [ -1 , 0 ] and forming with the axis Q = 0 angles equal 
to aI, on the region approximating the mapping of D (Fig.2). 

Fig. 2 

Thus the mapping of Sz in the & -plane will be represented by a region which is 
near to the half-plane in the sense of Lavrent’ev [5] who gave the estimates of the 

mapping of this region onto the upper half-plane. Separating the main part of the map - 

ping 5 = g (C I&I fCt)l~~ we arrive at (3.2). The uniform estimate of the re - 
lative difference with respect to the derivatives is of the order of 6 In 6, and that 
with respect to the functions, is of the order of S. 

Using (3.2) we obtain the following expressions for the coefficients 61 and 6, 

which appear in (3.1): a, (Er) z a &), bl (t,) zz b (Q where a (fJ and b (El) 
are the same as in Sect, 2. 

A solution of the Riemann - Hilbert problem (3.1) with discontinuous coefficients 
has the form 

( I 5 I > PO) 
( I P I < ro) 

(3.31 

The uniqueness of the solution is ensured by the condition that dP/d& is ink - 
grable at infinity. The constant A is determined from the second condition of 

(1.4), and the function P is given by a single formula 
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r: 

p = A (i-2)2+&i-z)+, s 
00 

since the discrepancy in the expressions for dPld I, is not large. 

When e << 1 , wehave 
PZ 4/h (2 - 5)l (3.4) 

to within the terms of the order of a , and this coincides with the result (2.3 1 every- 
where except in the small neighborhood of the point c = 0. From (3.4) it follows 
that maximum pressure is obtained at the foot of theshock wave and is equal to 1 + 46. 
The complex velocity w = ui - iv, can be determined from the equation obtain - 

ed from (1.2) 
f3W 

-cm- r”, i[ (rl = 1/(g - i~)~ + q2, co = rleiPl = 5 - e) (3.5) 
ar1 

This concludes the process of constructing the first term of the outer expansion. The 
solution is not regular in the neighborhood of the points 5 = 0, e. The singularity 
of the solution at the comer point of the wall is explained in physical terms. The sin - 
gularity in the velocities is displaced by the unperturbed flow to the point 5 = 8, 
and this is caused by the linearization of the equations. 

The matching can be carried out only if the zone of strong perturbations is small. 

To determine the size of the region of irregularity, we substitute the principal part of 
the inner expansion of the outer solution into (1.1) . The order of the discarded terms 
near F-i = 0 is equal to ~6~rr-l In r-l, and that of the retained terms is equal 
to 6. The outer solution can be used as long as r,/ 1 In r1 1 > ~6. When E = 

0 (1)s Tl = 0 (1) provided that 6 is of first order of smallness conpared with 
unity. This means that the linear dimension of the zone of strong perturbations is of 
the order of 8, i.e. of the order of the distance between the points 5 = 0 and 

5 = E which between them embrace the irregularity. When e = 0 (I), the re - 
gion of irregularity is finite, and the outer expansion depends on the inner expansion al- 

ready in the first approximation. If on the other hand the region of irregularity is small, the 
first terms of the outer expansion is obtained independently, and the first term of the inner - 

expansion is obtained by matching with the inner expansion of the first term of the Outer a- 
pansion C4 1. 

Thus the validity of (3.3) is apparently restricted by the values 8 = o (1) (weak 
shock waves) since, as we said before, the solution may be different when e = 0 (1) 

Let us now restrict ourselves further, to the case E < TO for which an uniform 

first order approximation is obtained in the simplest manner. We have r,=r+ 
0 (E) when r --f r,. We construct in the neighborhood of 1 5 1 < r. a solution 

of the system (1.1) satisfying the conditions of impermeability at the wall when fi = 
a, Jd (5 = rei@) , and the asymptotics obtained from (3.3 1 and (3.5 1 

Direct substitution confirms that the required velocity field is nearly potential 
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when r*ro. We shall seek a solution under the assumption that the velocities are 
potential everywhere in the region indicated, and have the smallest possible singularity 
when r + 0. We find that the solution is obtained by continuing the asymptotics 

(3.6 ) into the region i)w 
p= 

ifI 

Q.s,-1(+&(8-q 
(r < ro1 fJ < P < n) 

When 6, > 0 , the derivative dW/dr is integrable and we obtain 

w = rS1eiS1(P-“) (3.7 ) 

When 8, < 0 , we have 1 W 1 - r-61 -+ 00 as r 4 0. Inthiscase the function 
Pi admits the representation 

andwealsofindthat p-t-- (r-to, 61(O). 
Thus when a>0 , the pressure deviates from a constant value by a small term 

and has a singularity when a < 0 . The character of the singularity indicates that 
the flow becomes separated from the wall and forms a free surface in the small neigh - 

borhood of the point r = 0. When a < 0 , the search for a bounded solution 

should take this free surface into account. 
We note that the asymptotics (3.7 ) coincides with the asymptotics of the solution 

near the edge of a wedge when a perfect fluid flows past it 14 1. 
In the region 1 5 I > r. the velocity w can be found by integrating (3.5). 

A check shows that the solutions for w with r --t r. from the inside and from the 

outside, are basically the same. 
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